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Fully Implicit Particle-in-Cell Algorithm
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Motivation

2 Explicit Method:

� It is simple and straightforward to implement, BUT is inappropriate for multiple
time scale problems since they must resolve the fastest time scale supported by
the model (ω−1

pe /ω
−1
pi =

p
me/mi, ωpe∆t < 1).

� Numerical stability constraint on the grid spacing, ∆x < λDe, to avoid the finite-
grid instability.

Low frequecy regime
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Motivation

2 Semi-Implicit Method:

� Decouple Poisson equation from the equation of motion, but still implicit. →
no constraints as for explicit method (typically, ∆timplicit/∆texplicit ∼ 102,
∆ximplicit/∆xexplicit ∼ 102).

� Particle and field quantities are inconsistent at the each time step. → possibly
poor energy conservation.

x
n+1
i = x

n
i + v

n+1/2
i

∆t,

v
n+1
i = v

n
i + ∆t

q

m
E
n+θ

„
x
n+1/2
i

«
,

∇ · En+θ
= 4πρ

n+θ

⇓

∇ ·
" 

1 +
θ (∆t)2

2

X

σ

qσ

mσ
ρ
n
σ

!
E
n+θ

#
= 4π

“
ρ
n − θ∆t∇ · J̆n

”

Hyung Jin Kim, hjkim2@uiuc.edu



Motivation

2 Explicit Method:

� It is simple and straightforward to implement, BUT is inappropriate for multiple
time scale problems since they must resolve the fastest time scale supported by
the model (ω−1

pe /ω
−1
pi =

p
me/mi, ωpe∆t < 1).

� Numerical stability constraint on the grid spacing, ∆x < λDe, to avoid the finite-
grid instability.

2 Semi-Implicit Method:

� Decouple Poisson equation from the equation of motion, but still implicit. →
no constraints as for explicit method (typically, ∆timplicit/∆texplicit ∼ 102,
∆ximplicit/∆xexplicit ∼ 102).

� Particle and field quantities are inconsistent at the each time step. → possibly
poor energy conservation.

2 Fully-Implicit Method:

� Achieve consistency between particle and field quantities at the each time step.
→ improve energy conservation.

� To do this, both particle and Poisson equations are packed inside the nonlinear
solver such as Newton-Krylov solver.
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Fully Implicit Particle-in-Cell(FIPIC) Method

2 Electrostatic case is presented here. Extension to electromagnetic problem is
straightforward with some consideration.

2 The FIPIC method uses the nonlinear function (of Poisson equation) as a measure
of convergence of the coupled system.

2 The coupled system is packed inside the nonlinear solver such as Newton-Krylov.

2 The convergence of the nonlinear function F guarantees that one get the self-
consistent solutions of particles’ equation of motion and Poisson equation, be-
cause the particle and the field equations are evaluated iteratively inside a non-
linear solver.

2 The nonlinear residual is given by

F
“
ψn+θ,k

”
= ∇2ψn+θ,k + ρ

“
ψn+θ,k

”

~ξ
n+1
i = ~ξ

n
i + ∆τ~v

n+1/2
i

~vn+1
i = ~vni +

q

m
~En+1/2

“
~ξ
n+1/2
i

”

where n the time step, k the kth Newton iteration, and θ the time decentering.

2 Jacobian-free Newton-Krylov technique is employed for the nonlinear solver.
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Jacobian-free Newton-Krylov (JFNK) Methods

2 JFNK is a way to solve efficiently the nonlinear system ~F = 0 using Newton and
Krylov methods.

2 Newton’s method is a generalized iterative process to find accurate roots of a non-
linear equation, ~F (~u) = 0.

J
k
δ~u
k

= −~F
“
~u
k
”
, with ~u

k+1
= ~u

k
+ δ~u

k
, (1)

where J
k is the Jacobian matrix of which the element (i, j) is Jki,j =

∂Fi
∂uj

.

2 The solution of Eq. (1) is constructed by spanning the Krylov subspace in the
following form

δ~ukl =

l−1X

i=0

aiJ
i~r0, (2)

where l is the linear iteration number, and ~r0 is the initial linear residual.

2 Jacobian-free implementation is done by

J
k~r =

~F
“
~uk + ǫ~r

”
− ~F

“
~uk
”

ǫ
(3)
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JFNK Methods (continued)

2 For efficiency, an inexact Newton method is usually employed
‚‚‚Jkδ~uk + ~F

“
~uk
”‚‚‚

‚‚‚~F
`
~uk
´‚‚‚

< ηk. (4)

Here, ηk is a forcing term whose selection determines the order of convergence
of the inexact Newton method.

2 In Jacobian-free application, right preconditioning is often employed so that one
solves

J
k
P
−1
“
Pδ~uk

”
= −~F

“
~uk
”
, (5)

where P is the preconditioner.

2 The matrix-vector product for right preconditioning is

J
k
P
−1~r =

~F
“
~uk + ǫP−1~r

”
− ~F

“
~uk
”

ǫ
, (6)

and the preconditioned linear system, Eq. (5), is solved in two steps: solve`
J
k
P
−1
´
~wk = −~F

`
~uk
´

for ~wk, and then solve δ~uk = P
−1~wk.
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Preconditioner of Electrostatic System

2 Efficient preconditioner reduces the number of Krylov iterations considerably.

2 Differential form of preconditioner is derived from approximating the Jacobian
(Jk = ∇2 + ∂ρ/∂ψk) for the nonlinear Poisson equation.

2 ∂ρ/∂ψk can be rewritten by the shape function and the chain rule:
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∂ψ

˛̨
˛̨
ψk

=
∂

∂ψ

X

σ

X

j∈σ
qjS

“
~ξ − ~ξj

”
˛̨
˛̨
˛̨
ψk

=
X

σ

X

j∈σ
qj

∂S

∂~ξj

˛̨
˛̨
˛
ψk
·
∂~ξj

∂ψ

˛̨
˛̨
˛
ψk

.

2 Antisymmetry of shape function and temporal discretization of equation of motion
give
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2 Further, we obtain

∂ρ

∂ψ

˛̨
˛̨
ψk

= (θ∆t)
2 ∂

∂~ξ
·
"X

σ

qσ

mσ
ρ
k
σ
∂

∂~ξ

#
.

2 Finally, preconditioner for electrostatic system is given by
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Hyung Jin Kim, hjkim2@uiuc.edu



Fully Implicit Particle-in-Cell Algorithm

1: ~xnj and unj are given

2: ~r0 ←
‚‚‚~F
“
~ψn,k=0

”‚‚‚
3: while

‚‚‚~F
“
~ψn+θ,k+1

”‚‚‚ > τrel~r0 + τabs do

4: while
‚‚‚Jkδ ~ψn+θ,k + ~F

“
~ψn+θ,k

”‚‚‚ < ςk

‚‚‚~F
“
~ψn+θ,k

”‚‚‚ do
5: solve nonlinear Newton’s equations:
6: ~un+1,k

j ← ~un,kj + ∆t qm
~E
n+1/2,k
j

7: ~ξn+1,k
j ← ~ξn,kj + ∆t~u

n+1/2,k
j

8: ρn+θ,k ←P
σ

P
j∈σ qjS

“
~ξ − ~ξn+θ,k

j

”

9: ~F n+θ,k ← ∇2 ~ψn+θ,k − ρ
“
~ψn+θ,k

”

10: minimize ‚‚‚Jkδ ~ψn+θ,k + ~F
“
~ψn+θ,k

”‚‚‚ to obtain δ ~ψn+θ,k

11: end while
12: ~ψn+θ,k+1 ← ~ψn+θ,k + δ ~ψn+θ,k

13: evaluate ~F
“
~ψn+θ,k+1

”

14: end while
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Numerical Test(1): Electron Two Stream Instability

2 Equilibrium: uniform density (ni = ne = n0), ~E = 0, and unmagnetized.

2 Immobile ions and two cold electron beams with v0 = ±
√

3

2
√

2
ωpe/k.

2 1D domain of 32 grids, 105 simulation particles, and ωpe∆t = 0.1 time step.

2 Perturb. electron density: δn/ne = ǫ cos (k0ξ) with k0 = 2π and ǫ = 10−3.

2 Linear growth rate γtheoretical = 0.354, γsimulation = 0.341.
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Numerical Test(2): Electron Landau Damping

2 Equilibrium: uniform density (ni = ne = n0), ~E = 0, and unmagnetized.

2 Immobile ions and thermal electrons with Maxwellian distribution.

2 1D domain of 32 grids, 105 simulation particles, and ωpe∆t = 0.1 time step.

2 Perturbation of electron density: δn/ne = ǫ cos (k0ξ) with k0 = 2π and ǫ =

5× 10−2.

2 Linear damping rate γtheoretical = −0.153, γsimulation = −0.146.
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Numerical Test(3): Ion Acoustic Wave

2 Equilibrium: uniform density (ni = ne = n0), ~E = 0, and unmagnetized.

2 Thermal ions and electrons with temperatures Te/Ti = 100 and kλDe = 0.1.

2 1D domain of 64 grids, 105 simulation particles, and ωpi∆t = 0.1 time step.

2 Perturbation of ion and electron densities: δn/n0 = ǫ cos (k0ξ) with k0 = 2π and
ǫ = 0.1.

2 Frequency of IAW ωia|theoretical = 9.95× 10−2ωpi, ωia|simulation = 1.05× 10−1ωpi.
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Efficiency of Preconditioner

The preconditioner is applied to the Kylov method (GMRES), and its efficiency is
demonstrated.

P = ∇~ξ ·
" 

1 + (θ∆t)2
X

σ

qσ

mσ
ρσ

!
∇~ξ

#
.

preconditioning
# of iterations
(nonlinear/linear)

no preconditioning
# of iterations
(nonlinear/linear)

Two Stream 2/4 6/42
Landau Damping 2/4 6/46

Ion Acoustic Wave 3/6 6/60
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Grid and Time Step Convergence

2 Grid convergence study with ∆t = 10∆texplicit and 40 time steps for the Ion Acous-
tic Wave simulation with a mass ratio me/mi = 1/100.

Grid Newton/∆t GMRES/∆t CPU (s) dCPU
32 4 8 15.4 1.9
64 5 9 31.6 3.5

128 5 10 75.1 7.5
256 6 11 183.4 16.7

(dCPU is the CPU time normalized to GMRES/∆t)

2 Time step convergence study with 128 grids for the Ion Acoustic Wave simulation
with a mass ratio me/mi = 1/100.

∆t Newton/∆t GMRES/∆t CPU (s) CPUexplicit/CPU ∆t/∆texplicit

0.5 4 6 110.1 1.3 5
1 5 10 75.1 1.8 10
2 6 14 54.8 2.5 20
3 7 23 63.0 2.2 30
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Stability Study on Spherical Inertial Electrostatic Confinement
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Inertial Electrostatic Confinement

2 1930-1950: Inventions regarding electron focusing in cylindrical and spherical vac-
uum tubes.

2 1950-1960: Consideration of concentric spherical grids for production of nuclear
fusion reactions by

� Laverentev, Kharkov
� Farnsworth, ITT
� Elmore, Tuck, and Watson, Los Alamos

2 1960-1980: Further study of electrostatic plasma confinement at ITT, Kharkov, Illi-
nois, Wisconsin and Penn State.

� significantly developed experimentally by Hirsh.

2 1980-2000: Further study the theoretical issues.

� Study the concepts combined with magnetic confinement (PollywellTM , PFX-I).
� Study the new applications such as neutron generator.
� Further study the theoretical issues such as virtual potential well and instability.
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Ion-injected IEC (Background)

2 High-voltage is applied between spherical
transparent grid (cathode) and spherical
vacuum chamber (anode).

2 Ions accelerate towards the cathode grid,
focus in the center, causing a central virtual
anode with high ion density.

2 Electrons focus in the center of the virtual
anode creating a virtual cathode.

2 Ions near the center fuse with each other.

Dense plasma
core

cathode
spherical
grid

Anode

Virtual electrodes
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Ion-injected IEC (Properties)

2 Highly non-neutral (space charge effects).

2 Collisionless.

2 Non-thermal equilibrium.

� between a Maxwellian velocity distribu-
tion and a two beam velocity distribution
(Counter-streaming shifted Maxwellian).

2 Need the analysis of two-stream-like insta-
bility on the base of the kinetic model.

v

f(v)

−v v

f(v)

v

−v v

f(v)

v
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Motivation/goal

2 Two-stream-like instability is the most probable instability of SIEC system. Particles
in SIEC have drift velocities and are spherically converged/diverged.

2 Analyses on two-stream instabilities of spherically converging or diverging charged
particle beams are poorly-established.

2 For IEC system, it is increasingly important to develop understanding of instabilities
using a kinetic model based on the nonlinear Vlasov-Poisson equations.

� Space charge effects and collective instabilities (two-stream).
� Mode structures, growth rates, and thresholds.
� Damping mechanism and wave-particle interaction.

2 GOAL: to clarify detailed characteristics of beam instabilities excited in a spherical
inertial electrostatic confinement system.

� A kinetic model based on Vlasov-Poisson equations.
� Two-stream instability of spherically converging counter-streaming particle

beams.
� Stability limits for various operation parameters.
� δf particle simulation method.

Hyung Jin Kim, hjkim2@uiuc.edu



Normal mode analysis in spherical geometry

2 Applying a local theory (for uniform system) is “straightforward”:
JUST DO FOURIER/LAPLACE TRANSFORM−→ DISPERSION RELATION

2 Appying a nonlocal theory (for nonuniform system) is “HARD” (because Fourier
transform cannot be applied): need a new approach.

2 Consider the following equilibrium system:

∇ · (nv) = 0 −→ r
2
nv = const,

ni0,± (r) =
n̂0

2

r2c
r2
, vi0,± = ±v0, ne0 (r) = 2ni0 (r) , ve0 = 0, φ0 (r) = const.

2 Introduce a perturbation in terms of 0th spherical Bessel (Gegenbauer’s integral
representation):

δφ(r, t) ≡
X

l

Clj0(klr)e
−iΩlt =

X

l

Cl

2

Z 1

−1
dη ei(klrη−Ωlt).
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Stability boundary in spherical IEC

2 Cold ion beams and hot electron background

v0
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<

1q
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De
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`
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δf Particle-in-Cell method

2 The governing equations which we solve in the electrostatic δf -PIC model consists
of the particle weight equations, the trajectory equations, and Poisson’s equation
for the electric field.

dωσi

dt
= − (1− ωσi)

qσ

mσ

δE · 1

fσ0

∂fσ0

∂v
, (8a)

dxσi

dt
= vσi, (8b)

dvσi

dt
=

qσ

mσ

E (xσi (t)) , (8c)

∇2
δφ = −4π

X

σ

qσ

NσX

i=1

wσiS (x− xσi) , (8d)

where ωσ ≡ δfσ/fσ is the the weight function and S (x− xσi) is the shape func-
tion.
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Equilibrium of SIEC

2 by setting ∂/∂t = 0 and looking for stationary solutions f0σ (x, v) and φ0 (x) that
satisfy the equations


v · ∂

∂x
+
qσ

mσ
∇φ · ∂

∂v

ff
fσ0 (x, v) = 0, ∇2

φ = −4π
X

σ
qσ

Z
dvfσ0 (x, v) .

2 Equilibrium distributions fi0 and fe0 are assumed to be
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`
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2q
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m
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E − L/2mr2c

”
and v̄2⊥ ≡
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2 Equilibrium φ0 can be determined self-consistently by the Poisson equation

1

r2
∂

∂r
r
2 ∂

∂r
φ0 (r) = −4πe (ni (r)− ne (r)) ,

where ni (r) =
R
dv fi0 (r, v) and ne (r) =

R
dv fe0 (r, v).
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Properties of ion distribution function
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2 Drifted Maxwellian at cathode grid.

2 As approaching to centre, deviated from the drifted Maxwellian (v⊥ increases).
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Equilibrium profiles

2 Newton-Krylov nonlinear solver and Monte-Carlo method (VEGAS algorithm).
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˛T||/eφc
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˛, β ≡ T⊥/ |eφc|, and ζ ≡ Te/ |eφc|)
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Random variate generation

2 Quality of random variate is very important because initial particle loading may
affect the later behaviour of the sysem.

2 Ion distribution function fi0 is a multivariate function, i.e., r, vr, and v⊥.

2 For random multivariate generation, mutlidimensional kernel density estimate
method is applied.
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Computational issues

2 Geometric effect near at the spherical center may generate the unwanted noise if spherical coordi-
nates system is applied. grid volume ratio: VN/V0 = 3N2 + 3N + 1.

2 Remedies: (1) increase the number of simulation particles, (2) use non-uniform grid, or (3) apply
cylindrical coordinates system.

2 Poisson solver

� Embedded Boundary Method (EBM)

R

0

0L −L

(i, j)

z

r

Two-dimensional computational domain in cylindrical geometry. The system boundary is depicted inside the

rectangular domain with uniform grid cells and represents the sphere.

� Even for cylindrical system, grid volume ratio is VN/V0 = 2N + 1. Non-uniform grid is used.

2 Transform variables (between spherical and cylindrical): (r, θ, ϕ) ⇔ (ρ, ϕ, z),
`
vr, vθ, vϕ

´
⇔`

vρ, vϕ, vz
´
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Embedded boundary method

ψNψRψN−1ψN−2ψiψ2ψ1ψ0 ψL
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2 ψ (x) = x2 sin (πx) on −0.626 ≤
x ≤ 0.626 with Dirichlet boundary
condition

2 ψ (x, y) = x2 + y2 on a circular

domain with radius r = 0.713 with

Dirichlet boundary condition
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δf simulation:

2 Equilibrium: spherically smmetric solution (ni (r), ne (r), andφ (r)) from self-
consistent Poisson equation, and unmagnetized.

2 2D cylindrical domain of 32 × 64 grids, 105 simulation particles, ωpi∆t = 10−3

time step, and mass ratio mi/me = 100.

2 Initial perturbation of weight: δf/f0 = ǫ sin (kξ) sin (κθ), ǫ = 10−3.

2 Distribution function parameters: α = 10−2, β = 10−1, ζ = 100, and
vb/
p

2 |eφc| /m = 0.5. ⇒ vb/Cs ≈ 0.7.

2 Growth rate γ/ωpi,rc = 2.5× 10−1 for symmetric perturbation.
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δf simulation: evolution of distribution function

2 Ion and electron distribution functions
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2 Perturbed electrostatic potential δφ
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δf simulation: growth-rate of two-stream instability

2 Growth-rate is obtained for various parameters such as α, β, κ.

� φc = −1.0kV , α = T||/ |eφc|, β = T⊥/ |eφc|, and κ = 0 ∼ 2 (angular
perturbation).

2 Given parameters, the growth rate is decreased for small angular momentum
spread.

2 Symmetric perturbation gives high growth rate.
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Summary and conclusion

2 A fully implicit particle-in-cell scheme has been developed and implemented using
a Jacobian-free Newton-Krylov technique.

� An efficient preconditioner is derived from the nonlinear Poisson equation and
particle description relations.

� The simulation experience presented here demonstrates the energy conserva-
tion property of the systems and the efficacy of nonlinear solver. This technique
facilitates simulations of kinetic ion and electron plasma with multiple time scale.

2 Nonlocal theory in spherical IEC has been developed and applied for seeking sta-
bility boundary for cold ion beams.

� gives complete dispersion relation.
� is applicable for spherically converging beams.

2 Perturbative (δf ) Particle-in-Cell method has been developed for spherical IEC.

� Combined with EBM: reduced geometric constraint.
� Multivariate random generation with KDE.
� Obtained growth rates for various distribution function parameters and angular

perurbations.
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